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ABSTRACT
19512

The conditions for similitude in hypersonic flow past flat
(v = 0) and axisymmetric (v = 1) slender blunt bodies with
a turbulent boundary layer on the surface are investigated,
assuming variable entropy at the outer edge of the layer.

The case of a laminar boundary layer has been treated pre-
viously by the author (ref. 1) and without regard for the

influence of variable entropy by Cheng, et al. (ref. 2).

In hypersonic flow past slender blunt bodies, the boundary 1ayef on their
lateral surface is developed inside an inviscid, intensely fturbulent, high-
entropy layer produced by the gas passing through a steeply inclined shock wave
segment formed in the vicinity of the nose.

Due to the high temperature and low density of the gas, the pressure
across the high-entropy layer may be assumed constant.

Strong transverse entropy gradients in the inviscid high-entropy layer
cause a considerable variation in entropy over the edge of the boundary layer,
which can have an appreciable effect on its characteristics,l particularly in
the case of a turbulent boundary layer with an effective adiabatic exponent 70

near unity. This can be amply confirmed by the use, for example, of empirical

1
This was first pointed out by Ferri and Libby (ref. 3) and later investi-
gated by a number of authors,
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formulas (ref. 4) that have been verified in the range of Mach numbers

M1 = 2 to 10:
Ce = p:’;’}', = 0.0296 0B, ~02p,u, (iy — i) . =~
¢ = =P = 2g¥uc ' ' 4 ‘
’_mez_c 16q R (1)
w ' )
'(R* = P;”‘ Ry Reo = P: y ir=1,+0.45, i, =0.28i; - 0.22 i, +0.5 z.,)
* . 00

Given constance o, PpM , and pi, a Free-stream Mach number M = « ,

and p ~ 0.03, these equations yield values of c_, and cq less for Sl =3

f 0
than for S, <« 8§, (i.e., for M, > landu = 1) by a factor of 1.8 and 1.5
respectively at ‘)’O = 1.4, and by a factor of 4 and 2.1 respectively at

Y 0= 1.1,

The following notation is used: ‘7‘W and q, are the local fricition and
heat flux, 1 is the length of the body, P, sk and U are the density,
viscosity, and velocity of the free strean, P, U2p, iU2, Pe, 5 RR and
ulU are the pressure, enthalpy, density, viscosity, and velocity of the air,
respectively, S is the entropy, o the Prandtl number. The subscripts 1, w,
and O refer to the values of the variables at the édge of the boundary layer,
on the surface of the body, and at the blunt body critical point. The asterisk
indicates the local pressure value of p and the so-called controlling
enthalpy i_%,

Let us assume that the equation of state, viscosity, and Prandtl number é

in the high-entropy layer are given by the equations

p =kpfy (ir k), B =cpof, (ink),  &=a (i, k), k =2

(c ='const~1, f; ~;:-)

(2)



In the shock layer (high-density layer contiguous to the compression
shock), the air is assumed to be an ideal gas with constant adiabatic
exponent V. |

Let x, = x 1 and Iy = y1 be the coordinates along the axis and along the

1

normal to the surface of a body whose shape is specified by the equation
i
r=plr (z) + 3d

where d and ey are the midsection diameter and drag coefficient of the nose,

a and B are characteristic slopes of the shock wave and surface of the body.
Then, in order to have similitude of flow, including that in the high-entropy
layer, in the case of inviscid flow past slender blunt bodies of identical
configuration rw(x), it is required, according to references 1 and 5, that the

following parameters be invariant in similar cases:

- 1 __A,d1+; -
0 = MB, K ='2—viB 3— (“2"[") ? : T’ k for d<al; o, B<‘ (3)

and that the following function be invariant in the high-entropy layer:

B

s = s(9) (s’= sinte, g = —"’— ¥ = (—;-d)”'pwﬂv ) (4)

where ¥ (1)

is the dimensional streaming function, € is the slope of the
shock wave at its points of intersection with streamline ¥ .
Similitude will hold in the high-entropy layer under the condition that

at constant entropy the dependence of i on p can be neglected, which is true

when 70 — 1 « 1 or when the variations in « are small in similar cases.




With an identical equation of state, the quantities i(s, k) and p(s, k)
immediately behind the shock wave will be the same,2 hence in similar cases the
functions i(g) and u(g) in the high-entropy layer will be the same.

In analyzing a turbulent boundary layer, we will assume that the
quantities Tw and qw depend on the local boundary parameters as in the case of
a boundary layer on a plate, and we will take into account their dependence on

the distribution of the functions

B, @ P for < ()

by means of the coefficients (F and G in egs. (6)), which are functionals of

the functions (5). Then, extending equations (2) to the entire region of the
boundary layer, the existing empirical relations for plates (see, e.g., ref. 3)

can be generalized to the case of the inconstant functions (5) as follows:
¢ = B F (2) ko8(Py)8Q, ¢, =G (x)¢, Q= (%‘3)“ g—14, P = _é;. (6)
o0

The momentum and energy equations for the turbulent boundary layer are {15

used in integral form:

5 5 5
d duy C 3
2 (ron @ —wyay = B oy 4 G {roudy + Grofer
o o - ; 0 NN
bd - s h u? i (7)
E—S pur® (iy — iy) dy = (prw)ch | -(i.,'= i+5)
5 -

2Assuming everywhere an ideal polytropic gas, the effect of the Mach
number M on the profile of the shock wave in its leading portion and the rela-
tions describing it are accounted for in the variable k( Y, M). This effect

of M will be neglected in the case of the general equation of state.
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Regarding the profiles of the quantities u/'ul and i/io, we will assume
that they depend on the variable = = y/§ (where 1§ is the thickness of the
boundary layer), on the local values of il and iw and derivative 98i/ém at

n =1, as well as on the two parameter33 A and ).2. Then the integrals

1
. ’ 1 .
poe =S"5Z‘ (- H)ea o={fa—ine
1 - .
N ”

[}

will also depend on these parameters and the boundary conditions, where
P, P(D ' is the density at the given local pressure and stagnation enthalpy.

Making use of equations (6) and (8), equations (7) reduce to the form

dpP

d , |
2z Y, (gt —1) +_u_1_ Pu1Y1I"-'+‘k"”"";FQ

d 2, k
-‘-:-(r.?'Puiylbf*) = ,er-v az

(9)
d ‘ d
= (ro"Pu Y 19) = K02 *GFQ (Y = %, Yl:B—)

We note that, assuming known laws of friction and heat transfer (6), it
may then be presumed conceptually possible to determine the coefficients F and
G from the distribution of the functions (5). Specifically, these coefficients
can be prescribed functions of the local boundary conditions and parameters

*%

8 ’!” xl’ A'2'

The quantities i. = i(¢i) and u = u(¢i) are determined from the equations

1
of mass flow through the cross section of the boundary layer:

In a more general formulation of the problem we would replace the depend-
ence of the profiles on Al and A2 by their functional relation with the
distribution of the functions (5). For v = 1, these profiles and the
coefficients F and G may also depend on the parameter 6,/Brﬁ.
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. ov—1 ulrw‘ P -
P (Z) - fl (il) TCTYII

(10)

The relative thickness of the boundary layer Yl must be determined, as in
the laminar case, from the stipulation that the velocity and enthalpy profiles

join smoothly between the inviscid high-entropy layer and boundary layer:

Puy-  diy

ai di __ovl . v o =

Wzyl'a—f-——z (rw+Y1)Ylkf1(i‘)KdQ

a3 a3 .. ' 11
u;'bu_r:="ﬁ' i=14, u=u form=1 (11)

If the boundary layer exceeds the limits of the high-entropy layer, the

conditions (11) then assume the form

ettt -

o o . -
E~56~Y1a’z0, flzazzO, u; =1 for n=1 (12)

The term containing dul/dx drops out of equations (9), and equation (10)/16
becomes superfluous. It is expected that the characteristics of the turbulent
boundary layer (the functions F and G in particular), as in the laminar case,

will not depend on i1 for i. «<1, i.e., on IVL_L for M1 > 1., This is corroborated

1
to a certain extent by the empirical formula (1), which does not depend on
il as il — 0,

Equations (9) to (11) comprise a closed system in the unknowns
}‘1’ )\2 ’ ¢l, and Yl. In order to solve equatioms (10) we need to know the
values of )\l and )\2 near the nose (x = 0), which must be ascertained in
terms of the quantities 096 x> and 88 1in the region where the nose joins the

lateral surface., Since p ~a2 , the ratio of the total heat flux or friction

forces on the nose to their values on the lateral surface, as well as the




%
corresponding ratios for § J and §8  , according to (1), are of the

A

order .

© ~ (—‘f—)o.sa—l“ (1 + E})—v

(4)
As in reference 1, the category of situations investigated will be
delimited by the condition5.
L e\ : d
Kﬁa""‘(%)”_‘ Le<m<Y) @i~BS T forv=t (13)
Then
. N - . —m) — 8(4 i\ -
oZFamg1 for‘1<i<2—%% (m; =~(4+5v)(3‘§(}+':)). ( ﬂl}"”i) (B)

Consequently, when the conditions (13) are satisfied, we have
6 (0)/8 (1) < 1. Hence, it may be assumed that § (0) =~ O and the effect of

the conditions at x =~ O on the solution of equations (10) can be neglected.

4This presupposes the existence throughout of a turbulent boundary layer.
Should a laminar layer prevail on the blunt body, this will only (for

sufficiently large R _ ) reduce the value of w.

5The maximum order of magnitude of Ka = K(B/a )3+y will occur when
the order of the perturbations injected into the airstream by the body are
governed by the influence of the nose., Inasmuch as in this case Ka ~ 1, the
first condition (13) will almost always be satisfied for m = O. The condition
@ < 1 cannot be met for a blunt cylinder, because now it is possible for

o ~ (d/1 a2)4/5 )4/15« 1

~ 1; for a plate, w ~ (d/y



The influence of the boundary layer on the outer flow can be taken into
account by increasing the thickness of the layer to the value 8.* at which the
boundary layer is exceeded, and replacing the shape of the body by the effective

shape

r=Bte@+v)  (v=7F) (14)

Ir 182 = B‘1Y2 is the thickness of that portion of the inviscid high-
entropy layer bounded by the streamline lbl at the local pressure, then clearly

@ i) d
Y* = Y, — Y, (rv + Yz)H-V = rpit + )_‘g% f (‘;): P (15)

4]
. Here the subscript 2 refers to the values of the quantities in the
inviseid high-entropy layer.

Equations (9) to (15) contain, in addition to the similarity criteria (3)
and (4), the parameter 2 and the function iw(x). From this we are able to
formulate the following law of similitude.

In hypersonic flow past slender bluﬁt bodies with a turbulent boundary

o

layer on their lateral surface, similarity of flow will hold true for identical

values of the parameters and functions 417

0 kK9 (@), 5@ (@ ()

Here the functions P(x, Y), V(x, Y) = v/B , P(x, Y) in the shock layer
and P(x, Y), u(x, ¥), i(x, Y) in the inviscid high-entropy and boundary layers
will be identical in similar cases.

Furthermore, the distribution of the quantities P, cfAB 3, and cq/[,*3

will be the same on the surface of the body.




For bodies with a power-law configuration rw = Xn, the charactieristic
length 1 will be absent (refs. 4 and 5) and may be eliminated from further

v

consideration, letting, for example, K = 2~ . The variables x, Y and the

parametef » in this case must be replaced by the respective quantities

1 34 1 2

2z; T VFi 14y 2 TV itV
E= dl Cx +131+v’ L= ;1111 Cx 1+ BH—V
, (16)
2roc 0.2 _ 02 _0.S+1.2V d
Qo = (—Il;l > e W, Ry = Rooii

In the case of a laminar boundary layer, the parameters analogous

to 2 and Q 0 have the form

Yi 4 | vy _Lkv 204w
9"‘%:(%6) BT Qoz=(2mc> cx TR T (E)

Here x is the usual interaction parameter of the laminar boundary layer
with the outer flow (ref. 1).

The quantities (16) can be replaced by their equivalents for 8 — O:

_ 3 2 0.841.2v (F)
El — §98.8+1.2v , ;1 — gQ?}.S-H.ZV .. QM — 906 Htow

Now in similar cases we find identical distribution of the quantities

) S . ' (@)
PORY™,  o(BRY™ B (x=garim) |

{
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